Сварка плавлением

16/03/2012 в 09:45

При сварке плавлением силы межатомарного взаимодействия возникают между материалами двух свариваемых заготовок, находящихся в месте соединения в жидком состоянии. Для получения неразъемного соединения кромки свариваемых заготовок расплавляются с помощью мощного источника теплоты; расплавленный металл образует общую сварочную ванну, смачивающую оставшуюся твердой поверхность соединяемых элементов. При этом происходит смешивание расплавленного металла соединяемых заготовок и установление межмолекулярных связей. В процессе расплавления устраняются все неровности поверхностей, органические пленки, адсорбированные газы, окислы и другие загрязнения, мешающие сближению атомов. По мере удаления источника нагрева жидкий металл остывает, начинается процесс кристаллизации с образованием сварного шва, соединяющего заготовки в единое целое. Кристаллизация начинается от частично оплавленных зерен основного металла и заканчивается обычно в центре шва, где происходит встреча двух фронтов кристаллизации, начинающихся от кромок свариваемых заготовок. Сварку можно осуществлять расплавлением только кромок свариваемых заготовок либо дополнительно к этому расплавляется присадочный металл, как правило, металл электрода.

В зависимости от типа выбранного источника теплоты сварку плавлением можно подразделять на разновидности, название которых указывает на тип примененного источника энергии, например, электродуговая сварка плавлением, электронно-лучевая сварка плавлением, ацетилено-кислородная и т. п.

Металл сварного шва, полученный при сварке плавлением, по своей структуре и химическому составу существенно отличается от металла свариваемых заготовок, так как в процессе расплавления в сварочной ванне происходят металлургические процессы: испарение и окисление некоторых элементов, поглощение газов, легирование, диффузия и др. Полученный в процессе сварки плавлением сварной шов имеет литую структуру. Основной металл заготовок, прилегающий к сварному шву, в процессе сварки нагревается до значительных температур, в результате чего в нем происходят структурные изменения - укрупнение зерен, выделение новых фаз, появление новых структур типа закалочных. Зону основного металла, прилегающего к сварному шву, в которой происходят структурные изменения, вызываемые нагревом при сварке, называют зоной термического влияния (ЗТВ). Сварной шов, ЗТВ и основной металл называют сварным соединением.

Механические, антикоррозионные, магнитные и другие свойства сварного соединения могут существенно отличаться от свойств основного металла. При сварке стремятся к получению равнопрочного соединения, т. е. равенству всех его показателей с показателями основного металла. К сварке плавлением относится и наплавка металлов, широко применяемая, как при изготовлении новых конструкций, так и при ремонтных работах. Наплавкой называют процесс нанесения слоя металла на нагретую до расплавления поверхность заготовки. Наплавка необходима для создания на поверхности слоя металла, обладающего особыми свойствами, либо для восстановления размеров изношенных деталей.

Электрическая дуговая сварка является одним из наиболее распространенных способов сварки плавлением (рис. 39).

Сварка плавлением

Рис. 39. Схемы дуговых способов сварки плавлением:

а - ручной; 6 - автоматической под флюсом; в - неплавящимся электродом в защитных газах; a - плавящимся электродом в защитных газах

К свариваемым заготовкам 1(рис. 39, а) и к электроду 2 подводится постоянный или переменный ток от специального источника тока 3 и возбуждается электрическая сварочная дуга 4 - стабильный электрический разряд в ионизированных парах или газах. Электропроводимость промежутка 1, в котором возбуждается и функционирует дуга, обусловлена электронами и ионами, возникающими в результате термической ионизации. Температура, необходимая для ионизации в момент возбуждения дуги, получается вследствие выделения теплоты при коротком замыкании электрода на деталь; в установившемся процессе ионизация происходит под действием высокой температуры дуги.

Максимальная температура дуги наблюдается в осевой ее части и составляет 6000 °С. На поверхностях электродов температура обычно близка к температуре кипения материала элек* тродов. Тепловая мощность q дуги зависит от величины силы тока 1и напряжения U; q = yUI, где ср - коэффициент, равный 0,8-0,95. Меньшая часть теплоты сварочной дуги теряется в окружающей атмосфере, а большая часть идет на нагрев и плавление основного и присадочного металлов.

Для питания сварочной дуги применяют специальные источники тока, по своим характеристикам существенно отличные от? источников тока для освещения, питания электродвигателей, тепловых установок и др. Сварочные источники тока должны обеспечивать стабильную дугу при относительно невысоком напряжении и легкое регулирование величины тока, постоянство тока при изменении длины дуги и должны безаварийно выдерживать режим короткого замыкания. Применяют источники переменного тока (сварочные трансформаторы) и постоянного тока (генераторы или выпрямители), которые обеспечивают большую стабильность дуги и поэтому предпочтительнее.

Дуговую сварку можно выполнить плавящимся и кеплавя-щимся электродами. В качестве плавящегося электрода рекомендуют применять металлический стержень состава, идентичного составу свариваемых заготовок. В качестве неплавящегося электрода применяют, как правило, вольфрамовый стержень. Сварку неплавящимся электродом можно вести без присадки или с применением присадочного материала, подаваемого непосредственно в дугу. Разновидности дуговой сварки плавлением различают в зависимости от степени автоматизации и рода защиты расплавленного металла от воздействия окружающей атмосферы.

При ручной дуговой сварке (рис. 39, а) возбуждение дуги, ее поддержание, опускание электрода по мере его плавления и перемещение электрода вдоль свариваемых заготовок осуществляет сварщик.

В качестве электродов в этом случае применяют прутки из сварочной проволоки, покрытые специальным составом. В покрытия электрода вводят элементы, способствующие стабилизации дуги и осуществляющие защиту расплавленного металла от вредного воздействия окружающей среды, раскисление и легирование металла шва. По назначению электроды подразделяют: для сварки конструкционных углеродистых, низколегированных и легированных сталей, а также цветных металлов и сплавов и для наплавочных работ. Основным требованием, предъявляемым к электродам, является обеспечение необходимой прочности и нужного структурного состава металла шва.

Электроды подразделяют на типы, обозначаемые буквой Э и последующей цифрой, указывающей предел прочности металла шва, выполненного данным электродом. Например, Э-42, Э-55, ... Э-125 и т. д. Электроды каждого типа могут иметь несколько марок, определяющих систему легирования металла шва. На практике чаще всего применяют электроды диаметром 2-6 мм. Чем больше толщина свариваемого металла, тем больше должен быть диаметр электрода. Величина сварочного тока, А: 1св - 40(1,, где d3 - диаметр электрода, мм.

Ручную дуговую сварку широко применяют в машиностроении при сварке заготовок из сталей и цветных металлов благодаря своей универсальности и возможности вести процесс во всех пространственных положениях: нижнем, вертикальном, потолочном. Основные недостатки этого способа - малая производительность и необходимость высокой квалификации оператора.

Автоматическая дуговая сварка под флюсом обеспечивает производительность в 10-15 раз большую, чем производительность ручной дуговой сварки и, кроме того, она не требует оператора столь высокой квалификации. При автоматической сварке процессы зажигания дуги, подачи электрода в дугу и перемещения его вдоль направления сварки осуществляются механически (рис. 39, б). Электрод, представляющий собой сварочную проволоку большой длины, заправляется в кассету 4 и подается в дугу с необходимой скоростью с помощью подающих роликов 8, приводимых во вращение двигателем 3 через редуктор 2. Эта сборочная единица, называемая сварочной головкой, помещается на самоходной тележке-каретке 5, приводимой в движение двигателем каретки 7 через редуктор 6. Напряжение на электрод от источника тока подается через скользящий контакт 9. Скорость сварки задается скоростью перемещения каретки.

Защита расплавленного металла от воздействия воздуха осуществляется порошкообразным флюсом, ссыпаемым из бункера 1 непосредственно перед дугой. В состав флюса входят элементы, обеспечивающие стабильность дуги, а также процессы легирования, раскисления и формирования металла шва. Флюсы, расплавляясь, создают шлаковый купол над зоной сварочной дуги, препятствующий проникновению воздуха. После химико-металлургического воздействия в дуговом пространстве и сварочной ванне флюсы образуют па поверхности шлаковую корку, в которую выводятся из расплавленного металла шва окислы, сера, фосфор и газы.

Автоматическую сварку следует производить проволокой, приближающейся по своему химическому составу к свариваемому металлу. Стандартами предусмотрен выпуск проволоки 77 марок для сварки сталей, проволоки 30 марок для наплавочных работ и проволоки 14 марок для сварки алюминия и его сплавов и т. д.

Автоматическую сварку под флюсом целесообразно применять в нижнем положении для непрерывных швов большой протяженности. Применение ее для коротких швов либо швов сложной траектории экономически невыгодно. Для швов, расположенных вертикально, автоматическая сварка под флюсом неприменима. Разновидностью дуговой сварки под флюсом является полуавтоматическая сварка. В этом процессе подача электрода осуществляется механически, а перемещение его по направлению сварки - вручную. Способ рекомендуют для сварки коротких и криволинейных швов в нижнем положении.

При сварке в защитных газах в зону сварочной дуги подается инертный либо нейтральный газ, достаточно надежно защищающий расплавленный и остывающий металл сварного шва от контакта с окружающей атмосферой. В качестве защитных газоз наибольшее применение получили инертные газы - аргон и гелий и более дешевый углекислый газ. Иногда применяют смеси двух и более газов. При сварке с защитой инертными газами различают сварку неплавящимся и плавящимся электродами. Сварку неплавящимся вольфрамовым электродом можно проводить либо без применения присадочного материала, либо с присадочным прутком, как правило, для заготовок толщиной свыше 2-3 мм (рис. 39, в). В качестве присадки применяют проволоку, по химическому составу близкую к составу свариваемого металла.

Диаметр проволоки зависит от толщины свариваемых заготовок и колеблется от 0,5 до 3 мм.

Защитный газ к месту сварки доставляют в баллонах под давлением 1,56 107 Па. Для снижения давления применяют газовые редукторы. Расход газа обычно составляет 5-15 л1мин. Сварку плавящимся электродом обычно применяют для заготовок толщиной более 8 мм (рис. 39, г). В качестве электрода применяют сварочную проволоку состава, близкого к составу свариваемого металла, диаметром 0,5-2 мм. Применение при относительно малых сечениях электродов больших сварочных токов резко увеличивает проплавляющую способность дуги, а также производительность процесса.

Еще по теме

  • О нас
    Компания «Бюро-Маш» ведет свою деятельность по поставке станков и инструмента с 1999г. За время работы предприятие заняло лидирующие позиции на украинском рынке промышленного оборудования. Миссия компании – предоставить нашим партнерам новейшие открытия высокие технологий, использование которых, позволяет заказчикам реализовывать самые амбициозные бизнес планы. Наша компания ориентирована на сотрудничество с[..]
  • Кинематика процесса резания
    Обработка металлов резанием - это процесс срезания режущим инструментом с поверхностей заготовки слоя металла в виде стружки для получения необходимой геометрической формы, точности размеров, взаиморасположения и шероховатости поверхностей детали. Чтобы с заготовки срезать слой металла, необходимо режущему инструменту и заготовке сообщить относительные движения. Инструмент и заготовку устанавливают и закрепляют[..]
  • Физико-механические и технологические свойства конструкционных материалов
    Детали машин чрезвычайно разнообразны и для их изготовления необходимы материалы с самыми различными свойствами. Требования к материалам особенно возросли в эпоху научно-технического прогресса. В некоторых случаях для изготовления изделий необходимы материалы с повышенной коррозионной стойкостью, теплопроводностью и электропроводностью, особыми магнитными свойствами, тугоплавкостью, сверхпроводимостью и т. п. Для правильного использования[..]
Разделы
Счетчики